Implementation of solutions to reduce opioid-induced oversedation and respiratory depression

Purpose. The implementation of interventions to mitigate the causes of opioid-induced oversedation and respiratory depression (OSRD) is reported.

Summary. A single-site retrospective review of eligible rescue naloxone cases was conducted to identify the causes of opioid-induced OSRD in a hospital as well as to identify risk factors. A survey was used to assess potential opioid knowledge deficits among hospitalist prescribers. Based on the findings of the case reviews and results of the opioid knowledge assessments, a series of interventions to address noted deficiencies was implemented over the ensuing months, including enhanced monitoring for sedation, improved clinical decision support in the electronic medical record (EMR), and various adjustments to dosing for high-risk patients. The primary endpoint of our analysis was naloxone use for documented cases of opioid-induced OSRD to determine the effectiveness of the interventions. A mean of 16 OSRD events occurred per quarter before intervention implementation. An average of five risk factors (range, two to six) was found among OSRD cases, most commonly age of >60, obesity, and comorbidities of the kidneys and lungs. Deficiencies of clinical care were found in four inter-related domains: knowledge deficits, inadequate monitoring, failure to leverage the EMR, and cultural issues regarding pain assessments and sedation management.

Conclusion. Implementation of solution bundles that utilized an EMR to create meaningful clinical decision support and cultural changes related to pain goals and communication about sedation level at an acute care hospital resulted in a fivefold reduction in OSRD events that has been sustained for two years.

Keywords: analgesics, opioid; narcosis; narcotics; patient safety

Am J Health-Syst Pharm. 2016; 73:e679-86
which often require conversion as out-patients become inpatients.

Problem

OSRD occurred at an unacceptable frequency—more than five times per month—in our hospital. We sought to understand the full range of underlying causes of opioid-induced OSRD and to identify and implement multilevel solutions to reduce the rate of OSRD.

Background

Anne Arundel Medical Center is a 383-bed acute care hospital that serves a region of over 1 million people, with approximately 26,000 admissions and 7,900 inpatient surgeries each year. In-patient care is predominantly provided by general medical hospitalists on both the medical and surgical floors. The intensive care unit is staffed by fellowship-trained intensivists only, but no trainees contributed to the care of the patients described herein. The hospital uses an electronic medical record (EMR) (Epic Systems, Verona, Wisconsin) for all order writing, documentation, vital sign recordation, and medication flow sheets.

Analysis and resolution

Identification and review of adverse opioid events. Our hospital’s institutional review board (IRB) identified this project as a quality-improvement initiative and thus exempt from IRB review. With naloxone use as an indicator, all cases of potential OSRD in children and adults were identified from a pharmacy database. Naloxone use in the emergency department (ED) was excluded only if the OSRD episode was a result of opioid use before arrival at the ED. If naloxone use was due to an opioid received as therapy in our ED, it was counted among our cases. We also excluded naloxone use when given to hasten arousal from anesthesia in the operating room.

A multidisciplinary team of pharmacists, nurses, and physicians, drawn from existing harm-reduction committees, reviewed the medical records of each patient receiving naloxone to confirm that the OSRD was likely due to opioids and not from other causes. Criteria for inclusion included an altered level of alertness from baseline as identified and documented in nursing or physician notes, a respiratory rate of <8 breaths/min, recent opioid use with or without other sedating medications, clinical response to naloxone, and the absence of other explanations (e.g., stroke, hypoglycemic coma) that appeared in the medical record. For each adverse opioid event, a primary pharmacist reviewer reconstructed the case and presented it to the review group, which included two physicians, two nurses, and two pharmacists.

In order to understand the underlying causes of OSRD events at our institution, the group analyzed each validated case, focusing on both individual and system or cultural errors. A dynamic system of underlying causes was developed as cases were reviewed (Table 1). Patient risk factors were chosen from eight known patient-level risk factors: age of >60 years, body mass index (BMI) of >30 kg/m², diagnosis of sleep apnea, active cigarette smoker, use of other sedating medications, opioid naive, comorbidities of the lungs, and comorbidities of the kidneys. Since the hospital did not routinely collect data from sleep apnea screening tools, such as the STOP-Bang probability scale, this score was not considered in the risk factor calculation. Diagnosed sleep apnea was included if entered in the “problem list” of the patient.

To further understand the areas of potential knowledge deficits among prescribers, a locally modified opioid knowledge assessment tool was administered to prescribing hospitalists, including physicians and physician assistants. Two additional questions assessing knowledge about cross-tolerance when converting between agents and the benefit of monitoring for sedation were added (Table 2). These data formed the basis of targeted education and the development of computerized decision support.

A total of 57 episodes of confirmed opioid-induced OSRD events were identified in the preintervention baseline year (March 1, 2013, through March 31, 2014). These 57 patients had a median of five patient risk factors (range, two to six); the most common risk factor was age of >60 years (found in 90% of cases).

Based on this review and case reconstructions, several underlying causes for opioid-induced OSRD were identified at our institution and categorized (Table 1). Some cases were associated with more than one underlying cause.

Deficits in knowledge about opioid prescribing and safety were common among 24 staff hospitalists surveyed. Table 2 lists the general topics assessed by the opioid knowledge assessment and the hospitalists’ scores. Notable knowledge deficits were identified in the areas of definition of opioid toler-
Table 1. Underlying Causes of Opioid-Induced Oversedation and Respiratory Depression

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Specific Causes</th>
</tr>
</thead>
</table>
| Knowledge deficits             | • Danger of sustained-release opioids in opioid-naive patients; lack of understanding of definition of opioid naive  
• Too-rapid dosage escalation, including extended-release formulations  
• Multiple opioids used simultaneously  
• Sedation as a precursor for respiratory depression  
• Consideration for dosage reduction when converting from one opioid to another |
| Inadequate sedation monitoring | • Different scales in use; none developed specifically for opioids  
• No uniform policy and practice on frequency of assessments or action steps to be taken for sedation |
| Other practices                | • Transferring sedated patients from postanesthesia care unit to general surgical floors  
• Opioid doses administered before transfer |
| EMR deficiencies               | • No opioid conversion table easily available from within the EMR  
• No prescriber warnings about patient risk factors, use of long-acting opioids, and concomitant use of sedating medications  
• Information on pain scores, doses administered, and sedation levels located in multiple areas of EMR |
| Cultural issues                | • Clinical culture stressed the elimination of pain or the achievement of a pain score below an arbitrary number  
• No culture or practice for consideration of sedation levels during multidisciplinary rounds |

*EMR = electronic medical record.

Table 2. Opioid Knowledge Assessment Topics and Scores

<table>
<thead>
<tr>
<th>Topic of Question</th>
<th>Numeric Score (% Correct Answers)</th>
<th>Numeric Score (% Incorrect Answers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of opioid tolerance</td>
<td>7 (29)</td>
<td>17 (71)</td>
</tr>
<tr>
<td>Indications for extended-release opiates</td>
<td>5 (21)</td>
<td>19 (79)</td>
</tr>
<tr>
<td>Equianalgesic conversion ratio between morphine and hydromorphone</td>
<td>20 (83)</td>
<td>4 (17)</td>
</tr>
<tr>
<td>Sleep apnea as a risk factor for opioid-induced respiratory depression</td>
<td>18 (75)</td>
<td>6 (25)</td>
</tr>
<tr>
<td>Role of benzodiazepines in contributing to oversedation after opioids</td>
<td>22 (92)</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Patient risk factors (age and body mass index) for opioid-induced oversedation and respiratory depression</td>
<td>17 (71)</td>
<td>7 (29)</td>
</tr>
<tr>
<td>Pharmacokinetics of opioids used in dosage-escalation strategy</td>
<td>15 (63)</td>
<td>9 (38)</td>
</tr>
<tr>
<td>Sedation from opioids as a risk factor for subsequent respiratory depression</td>
<td>21 (88)</td>
<td>3 (13)</td>
</tr>
<tr>
<td>Dosage reduction when converting from one opioid to another due to incomplete cross-tolerance</td>
<td>11 (46)</td>
<td>13 (54)</td>
</tr>
<tr>
<td>Value of respiratory rate over pulse oximetry and apnea monitoring as an indicator of respiratory depression</td>
<td>13 (54)</td>
<td>11 (46)</td>
</tr>
<tr>
<td>Working knowledge of Pasero Opioid Sedation Scale*b</td>
<td>19 (79)</td>
<td>5 (21)</td>
</tr>
<tr>
<td>Need for dosage reduction due to incomplete cross-tolerance</td>
<td>12 (50)</td>
<td>12 (50)</td>
</tr>
<tr>
<td>Sedation as the first sign of respiratory depression before abnormal vital signs</td>
<td>5 (21)</td>
<td>19 (79)</td>
</tr>
</tbody>
</table>

*aPercentages rounded to nearest whole number.  
bAnswer is reported as percentage who answered yes.
CASE STUDY

OPIOID-INDUCED OVERSEDATION

Based on the findings of the case re-

istration (PCA) infusion pumps.

We found that hydromorphone

was commonly used in our ED for

complaints of pain, six times more

commonly than morphine. Some of

these patients were admitted and

subsequently given hydromorphone

administered via patient-controlled

analgesia (PCA) infusion pumps.

Interventions implemented.

Based on the findings of the case re-

views and results of the opioid knowl-

dge assessments, a series of interven-

tions to address noted deficiencies

was implemented over the ensuing

months, including enhanced moni-

toring for sedation, improved clini-

cal decision support in the EMR, and

various adjustments to dosing for

high-risk patients. The solutions used
to address these deficiencies are sum-

marized in Table 3.

Enhanced monitoring for seda-
tion. Our institution lacked a standard

approach for opioid sedation moni-

toring, including an interval of assess-

ments and the steps to follow if pa-

tients were found to be oversedated.

As noted in Table 2, there were pre-

scriber knowledge deficits about the

relationship between sedation and re-

spiratory depression. To address these
deficits, education efforts were pre-

pared for both prescribers and nurs-
ing team members. We identified the

Pasero Opioid Sedation Scale (POSS)
as an evidence-based and easy to ap-

ply method of monitoring patients’

sedation levels; this scale includes

suggested action steps for nursing and

medical staff.7 The tool was piloted on

the hospital’s joint and spine unit—

the clinical unit with the most cases

of OSRD at baseline—and then rolled

out to all adult units with nonventi-
lated patients. The POSS was incorpo-

rated into the EMR to facilitate docu-

mentation, assessment, and patient

care actions by nursing. The rollout

of the POSS was facilitated by mandatory

annual POSS education for all nurses

via the online education software used

at the medical center. All new nurse

employees receive classroom educa-

tion on pain management and POSS

administration based on the new poli-
cies. The education is reinforced with

the inclusion of the POSS in the nurs-
ing bedside shift report. Compliance

with the POSS was tracked in each

individual unit, with random audits of

over 30 patients each. The compliance

rates for POSS documentation were

88% for first opioid administration

and 76% for subsequent doses within

a few months of the rollout.

Clinical decision support. The

EMR was leveraged to provide pre-

scriber support, including linking

a pharmacy and therapeutics com-

mittee–approved opioid equival-

cency table into every order for opi-

oids. The table prominently displayed

the recommended advisory that dos-
age reduction should be considered

when switching drugs due to incom-

plete cross-tolerance and individual

patient factors.8

To facilitate informed prescribing

with opioids, an integrated docu-

mentation flow sheet was created for

all clinicians within the EMR. It gath-

ered together and displayed within a

single-screen view any related infor-
mation needed for safe prescribing

and monitoring, such as pain scores,

vital signs, sedation score, and analge-
sic doses given.

In addition, prescribing of pre-

operative long-acting opioids was

removed from most electronic medi-
cal order sets. In the few in which it

remained, the dose of preoperative

extended-release oxycodone was re-

duced from 20 to 10 mg.

PCA. Beginning in August 2015,

the EMR was also used to guide dos-
ing for patients receiving PCA infu-
sions. In the test environment, initial

criteria for dose reduction included

age of >60 years, BMI of >30 kg/m2,

creatinine clearance of <30 mL/min,
a known diagnosis of emphysema or

sleep apnea, or concurrent use of any

central nervous system (CNS) depres-
sant (i.e., anxiolytics, hypnotics, or

skeletal muscle relaxants); the pres-

eence of any of these criteria would

have invoked reduced dosing for 90%of

all patients using PCA. We therefore

modified the criteria by increasing

the age to ≥70 years, raising the BMI
to ≥37 kg/m2, and narrowing the list

of potential CNS active drugs to in-
clude benzodiazepines only, since this

class was most often associated with

OSRD at our institution. This form of
clinical decision support was built as

an order set default to a lower dosing

range. The alert for patients meet-
ing any of the criteria would result in

lower default demand doses (from 1.5
to 1.0 mg for morphine and from 0.3
to 0.2 mg for hydromorphone) and

to a lower default four-hour lockout

limit (from 30 to 24 mg for morphine

and from 6 to 4.8 mg for hydromor-

phone). The reduced dose was modifi-
bable by prescribers based on their

clinical judgment and patient history.

As basal rates of opioids are nearly five
times more likely to cause respiratory
depression than on-demand dosing,9

institutional PCA orders continued to

avoid a basal rate.

Because hydromorphone was

overrepresented in OSRD cases, we
took a number of steps to encour-

age the use of morphine rather than

hydromorphone and to make hydro-

morphine use safer. ED physicians

indicated that they preferred hydromor-

phone 1- or 2-mg doses because the

available dose of morphine in the au-

tomated drug-dispensing system was

too often ineffective at a dose of 4 mg.

Thus, a higher dose of morphine (8

mg) was added in addition to the 4-mg
dose. We also lowered the default dose

of hydromorphone in the pain order

set from 1 to 0.5 mg. We implemented

a “soft alert” for doses exceeding 1 mg

of hydromorphone, which served to

reinforce education about proper dos-
ing to ED staff.

Measurable outcomes. The pri-

mary endpoint of our analysis was

naltrexone use for documented cases

of opioid-induced OSRD. Figure 1

shows a sustained fourfold reduction

in the proportion of OSRD patients

requiring dose reduction from 4 to 2 mg

hydromorphone or 2 mg morphine.
in the number of validated naloxone interventions during the study period; these reductions have been sustained for two years. These improvements occurred despite a 41% increase in surgeries with a high risk of OSRD (thoracic, bariatric, and orthopedic), though total hospital patient-days declined by 3.5% over the study period. Overall opioid use decreased just 3% for the hospital.

The interventions to provide safer PCA dosing resulted in lower doses at initiation in 63% of all PCA orders. These EMR-generated clinical decision support recommendations were rarely overridden by medical staff. Over the course of these interventions, there was no change in overall patient satisfaction with regard to pain management, as measured by the Hospital Consumer Assessment of Healthcare Providers and Systems survey, a standard patient satisfaction tool.11

### Discussion

The primary goal of this quality-improvement project was to understand the underlying causes of and intervene to eliminate opioid-induced OSRD at our hospital. Because deaths from opioid-induced OSRD are rare, we relied on the surrogate marker of validated naloxone use as an indicator of clinical OSRD. Naloxone administration is a useful proxy, as naloxone is routinely administered for OSRD and is easily tracked by pharmacy databases. However, naloxone use can be nonspecific; therefore, all instances of its use were reviewed by experienced clinicians to verify that the patient actually had opioid-induced OSRD.

The improvements described in this article have been sustained for two years, and we attribute this success to institutional learning in four important areas: (1) the close relationship between sedation and subsequent respiratory depression with its attendant need for sedation monitoring, (2) enhanced caution about the transfer of sedated patients from the postanesthesia care unit, (3) the avoidance of extended-release opioids in opioid-naive patients, and (4) the reappraisal of pain management goals by reducing the focus on a numeric pain score in isolation from other patient factors. All four concepts are emphasized in

### Table 3. Solutions Implemented, by Deficiency

<table>
<thead>
<tr>
<th>Deficiency Addressed</th>
<th>Solution(s) Implemented</th>
</tr>
</thead>
</table>
| Inconsistent sedation assessments of patients receiving opioids: different scales in use, no uniform practice on frequency of assessment or action steps to be taken, hospital policies did not adequately address the optimum scale or the frequency of monitoring to be done | • POSS introduced after trial on the joint and spine unit; rolled out to all adult care units as the standard evidence-based assessment tool  
• Hospital policies on pain management revised to include use of POSS and standardize frequency of assessment |
| Poor communication among team members regarding level of sedation | • Implemented new report within EMR to show pain scores, sedation score, medications given, and vital signs in a single location  
• Introduced discussion of sedation score to the content of daily interprofessional rounds and bedside shift report |
| Clinical culture stressed the elimination of pain and/or the achievement of a pain score below an arbitrary number | • Reeducated staff and rewrote hospital policies, indicating that goals of pain management should be individualized |
| Knowledge deficits among prescribers in the following areas: opioid conversions, patient-level risk factors, other sedating medications, risk of long-acting medications, danger of rapid escalation, incomplete cross-tolerance | • Education delivered to hospitalists tailored to deficits identified by opioid knowledge assessment  
• EMR live link to opioid conversion table from the opioid order page  
• Clinical decision support/best-practice alert to fire when initiating opioids in patients with comorbid conditions or taking other sedating medications; advisory recommends lower starting doses and sedation monitoring  
• Computerized decision support defaults to lower-dose opioid drip for high-risk patients based on computer detection of patient factors identified in chart |
| Underappreciation of high incidence of OSRD with hydromorphone (used frequently in ED and then converted to infusions on floors) | • Reduced ED hydromorphone use by creating new pain order sets with default to morphine  
• Added morphine 4 mg to automated drug-dispensing cabinet instead of hydromorphone |
| Underappreciation of risks of long-acting opioids in opioid-naive patients; misunderstanding of definition of opioid naive | • Removed long-acting opioids from preoperative orthopedic order set  
• Best-practice alert that defines opioid naive when ordering long-acting opioids |

*POSS = Pasero Opioid Sedation Scale, EMR = electronic medical record, OSRD = oversedation and respiratory depression, ED = emergency department.
CASE STUDY

OPIOID-INDUCED OVERSEDATION

Figure 1. Naloxone use for opioid oversedation and respiratory depression between 2013 and 2016. PCA = patient-controlled analgesia.

Professional education, clinical decision support tools, and a culture that has moved toward the discussion of sedation levels concurrently with pain levels. We also sustain success by continuing to review all cases of naloxone use.

The POSS has been shown to generate consistent assessments and had high levels of user satisfaction in several studies. The tool was developed specifically for opioid sedation monitoring and incorporating specific action steps for nurses to follow when a certain sedation level is observed. The POSS also increased the amount of dialogue about sedation during interdisciplinary rounds and was included in shift-to-shift nursing handoffs.

Other institutions have reported on opioid OSRD events. Pawasauskas et al. performed a retrospective case-control analysis of patients receiving opioids, regardless of whether they developed respiratory depression. Statistically significant differences between cases and controls were noted for age; current smoking; concurrent sedating medications; and renal, cardiac, and respiratory comorbidities but not opioid-naive status. Patients who developed OSRD had a mean of 5.1 risk factors compared with controls, who had a mean of 3.3 risk factors (p < 0.001). Cases received 13% more morphine equivalents than non-OSRD controls, suggesting that overdosing may have played some role but not likely the principal role. We found a similar number of recognized risk factors in our study of OSRD patients. Many of our opioid-naive patients received extended-release opioids, which may account for the difference between our findings and those of Pawasauskas and colleagues. Meisel et al. reported a similar study focusing on postoperative patients. Some of the interventions they found helpful overlap our own improvements, including efforts to standardize pain assessments and monitoring, lower doses for high-risk patients, and require better handoffs of sedated patients.

This analysis had several limitations. Like many pre-post intervention studies in which solution bundles are implemented simultaneously, we cannot say which solution was most significant in achieving results. In addition, we used one particular EMR to introduce solutions that might not be transferable to other less comprehensive EMRs. The fact that nearly all hospital care, including postsurgical care, is rendered by hospitalists and hospi-
talist physician assistants allowed us to concentrate education efforts on a relatively small group of about 45 prescribers and not on a larger cadre of residents or on the entire medical staff of 1000 practitioners. In addition, data collection about patient satisfaction with pain management strategies was not limited to the approximately one half of our patients who received opioids and were thus affected by these changes.

Nevertheless, many of the institutional deficiencies found in this report have been described previously and are common in hospitals. For example, failure to monitor patients adequately was a factor in 29% of adverse opioid outcomes reported to the Joint Commission data base. In addition, a closed claim analysis of 92 postoperative opioid-induced respiratory depression–related lawsuits concluded that 97% were preventable with better monitoring and response.17

The role of sustained-release opioids used in orthopedic patients deserves special mention. Despite the fact that there are drug label precautions about use of sustained-release opioids in opioid-naive patients, some surgeons incorporated these agents into preoperative order sets in a well-intentioned effort to facilitate early mobilization. But at least one randomized trial found a higher oversedation rate and no better pain control or reduction in total opioid use with preoperative long-acting opioids in joint arthroplasty patients.18 Indeed, a recent multisociety guideline noted no proven benefit from this practice.19

We noted that hydromorphone was overrepresented in episodes of OSRD and took the described steps to reduce hydromorphone use. A pattern of care at our hospital was to initiate this drug in the ED. It was thus frequently continued on the inpatient floors as a PCA. Other studies have suggested that currently recommended starting doses of hydromorphone or the recommended conversions are too high.15,20,21 A recent study found that lowering the standard dose of hydromorphone via automatic substitution improved patient safety and did not reduce the adequacy of pain relief.21 Notably, the improvements described herein were achieved without the use of supplemental oximetry and capnography monitoring which some researchers have advocated.23,24 These techniques require both capital outlay and possibly increased labor expenses. In addition, the proliferation of alarms following expanded electronic monitoring has been implicated in patient safety incidents.25 Recent multisociety professional guidelines do not recommend the use of oximetry or capnography outside of the operating room.19

Conclusion

Implementation of solution bundles that utilized an EMR to create meaningful clinical decision support and cultural changes related to pain goals and communication about sedation level at an acute care hospital resulted in a fivefold reduction in OSRD events that has been sustained for two years.

Disclosures

The authors have declared no potential conflicts of interest.

References


